

Whole School Science Progression of Sticky Knowledge and Skills

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7 (Yateley)
	Question words	Question words	Questions can help us find	Questions can help us find out	Questions can help us find out about	Questions can help us find out about the world	Questions can help us find out about the world and	When studying Science,
	include who,	include what, why,	out about the world.	about the world and can be	the world and can be answered using	and can be answered using a range of scientific	can be answered using a range of scientific enquiries,	there are many skills that
	why, what,	how, when, who	Ask and answer scientific	answered in different ways.	scientific enquiry.	enquiries.	including fair tests, research and observation.	you will develop. These
	when, where	and which.	questions about the world	Ask questions about the world	Ask relevant scientific questions,	Ask a wide range of relevant scientific questions	Ask and answer deeper and broader scientific	include analysing
	and how.	Ask simple scientific	around them.	around them and explain that they	independently, about the world around	that broaden their understanding of the world	questions about the local and wider world that build	information to allow you to
	Ask a relevant	questions.	Tests can be carried out by	can be answered in different ways.	them and begin to identify how they	around them and identify how they can answer	on and extend their own and others' experiences	find a pattern, discussing
	scientific	Simple tests can be	following a set of	Tests can be set up and carried out	can answer them.	them.	and knowledge.	limitations of what you
	question to find	carried out by	instructions. A prediction is	by following or planning a set of	Scientific enquiries can be set up and	A method is a set of clear instructions for how to	A method is a set of clear instructions for how to	have observed and
	out more,	following a set of	a guess at what might	instructions. A prediction is a best	carried out by following or planning a	carry out a scientific investigation. A prediction is a	carry out a scientific investigation, including what	drawing conclusions from
	explain how things work and	instructions. With support,	happen in an investigation. Follow a set of instructions	guess for what might happen in an investigation based on some prior	method. A prediction is a statement about what might happen in an	statement about what might happen in an investigation based on some prior knowledge or	equipment to use and observations to make. A variable is something that can be changed during a	experiments that you have completed.
	why they might	follow instructions	to perform a range of	knowledge.	investigation, based on some prior	understanding.	fair test. A prediction is a statement about what	- In Science in Key Stage 3,
	happen.	to perform simple	simple tests, making simple	Set up and carry out some simple,	knowledge or understanding. A fair test	Plan and carry out a range of enquiries, including	might happen in an investigation based on some	you will build a foundation
	When we try	tests and begin to	predictions for what might	comparative and fair tests, making	is one in which only one variable is	writing methods, identifying variables and making	prior knowledge or understanding.	skill set that will allow you
	things out to	talk about what	happen and suggesting	predictions for what might happen.	changed and all others remain	predictions based on prior knowledge and	Plan and carry out a range of enquiries, including	to build further,
	see if they	they might do or	ways to answer their	Equipment is used to take	constant.	understanding.	writing methods, identifying and controlling	making links between
	work, it is called	what might happen.	questions.	measurements in standard units.	Begin to independently plan, set up	Specialised equipment is used to take	variables, deciding on equipment and data to collect	models and concepts,
	a test.	Simple equipment	Simple equipment is used	Examples include data loggers plus	and carry out a range of comparative	measurements in standard units. Examples include	and making predictions based on prior knowledge	enabling you to apply your
	With support,	can be used to	to take measurements and	sensors, timers (seconds, minutes	and fair tests, making predictions and	data loggers plus sensors, such as light (lux), sound	and understanding.	knowledge to unfamiliar
	use simple	measure distance,	observations. Examples	and hours), thermometers (°C) and	following a method accurately.	(dB) and temperature (°C); timers (seconds,	Specialised equipment is used to take accurate	contexts. This will give you
	equipment,	height, weight and	include timers, hand lenses,	metre sticks (millimetres,	Equipment is used to take	minutes and hours); thermometers (°C), and	measurements in standard units. Examples include	a solid base from which to
	such as timers,	time.	metre sticks and trundle	centimetres and metres). Taking	measurements in standard units.	measuring tapes (millimetres, centimetres,	data loggers plus sensors, such as light (lux), sound	build on in GCSE.
	rulers and containers, to	With support, use simple equipment	wheels. Use simple equipment to	repeat readings can increase the accuracy of the measurement.	Examples include data loggers plus sensors, timers (seconds, minutes and	metres). Take increasingly accurate measurements in	(dB) and temperature (°C); timers (seconds, minutes and hours); thermometers (°C) and measuring tapes	- You will develop a level of knowledge through to
_	measure length,	to measure and	measure and make	Take measurements in standard	hours), thermometers (°C), and metre	standard units, using a range of chosen equipment.	(millimetres, centimetres, metres).	mastery of the 10 Big Ideas
	height, capacity	make observations.	observations.	units, using a range of simple	sticks, rulers or trundle wheels	An observation involves looking closely at objects,	Take accurate, precise and repeated measurements	in Science and be
<u>:3</u>	and time.	Observe objects,	Observe objects, materials,	equipment.	(millimetres, centimetres, metres).	materials and living things. Accurate observations	in standard units, using a range of chosen	able to explain phenomena
Œ	Observe how	materials, living	living things and changes	An observation involves looking	Take accurate measurements in	can be made repeatedly or at regular intervals to	equipment.	and make predictions.
Ī	activities are	things and changes	over time, sorting and	closely at objects, materials and	standard units, using a range of	identify changes over time.	An observation involves looking closely at objects,	•
cientifically	going and adapt	over time, sorting	grouping them based on	living things, which can be	equipment.	Within a group, decide which observations to	materials and living things. Accurate observations	
Š	their ideas if	and grouping them	their features and	compared and grouped according	An observation involves looking closely	make, when and for how long, and make	can be made repeatedly or at regular intervals to	
B	necessary.	based on their	explaining their reasoning.	to their features.	at objects, materials and living things.	systematic and careful observations, using them to	identify changes over time, identify processes and	
orking	Data can be	features.	Data can be recorded and	Make increasingly careful	Observations can be made regularly to	make comparisons, identify changes, classify and	make comparisons.	
ō	recorded in tables and	Data can be recorded and	displayed in different ways, including tables, charts,	observations, identifying similarities, differences and	identify changes over time. Begin to choose which observations to	make links between cause and effect. An observation involves looking closely at objects,	Data can be recorded and displayed in different ways, including tables, bar and line charts, scatter	
≥	pictograms.	displayed in	pictograms and drawings.	changes and making simple	make and for how long and make	materials and living things. Accurate observations	graphs, classification keys and labelled diagrams.	
	Record data in	different ways,	The results are information	connections.	systematic, careful observations and	can be made repeatedly or at regular intervals to	Independently decide which observations to make,	
	simple tables	including tables,	that has been found out	Data can be recorded and	comparisons, identifying changes and	identify changes over time.	when and for how long and make systematic and	
	and pictograms.	pictograms and	from an investigation and	displayed in different ways,	connections.	Data can be recorded and displayed in different	careful observations, using them to make	
	Represent	drawings.	can be used to answer a	including tables, charts, graphs and	Data can be recorded and displayed in	ways, including tables, bar and line charts,	comparisons, identify changes, classify and make	
	scientific		question.	labelled diagrams. Data can be	different ways, including tables, charts,	classification keys and labelled diagrams.	links between cause and effect.	
	observations by	The results are	Use a range of methods	used to provide evidence to answer	graphs, keys and labelled diagrams.	Gather and record data and results of increasing	The results are information, such as measurements	
	mark making,	information that	(tables, charts, diagrams	questions.	Gather, record, classify and present	complexity, selecting from a range of methods	or observations, that have been collected during an	
	drawing or	has been found out	and Venn diagrams) to	Gather and record findings in a	observations and measurements in a	(scientific diagrams, labels, classification keys, tables, graphs and models).	investigation. A conclusion is an explanation of what	
	creating simple charts and	from an investigation.	gather and record simple data with some accuracy.	variety of ways (diagrams, tables, charts and graphs) with increasing	variety of ways (pictorial representations, timelines, diagrams,	The results are information, such as measurements	has been discovered, using correct, precise terminology and collected evidence.	
	tables. Offer	With support,	Begin to notice patterns	accuracy.	keys, tables, charts and graphs).	or observations, that have been collected during	Choose an appropriate approach to recording	
	explanations for	gather and record	and relationships in their	Results are information that has	Results are information, such as data or	an investigation. A conclusion is an explanation of	accurate results, including scientific diagrams, labels,	
	why things	simple data in a	data and explain what they	been discovered as part of an	observations, that have been found out	what has been discovered using evidence	timelines, classification keys, tables, models and	
	happen, making	range of ways (data	have done and found out	investigation. A conclusion is the	from an investigation. A conclusion is	collected.	graphs (bar, line and scatter), linking to	
	use of	tables, diagrams,	using simple scientific	answer to a question that uses the	the answer to a question that uses the	Use relevant scientific vocabulary to report on	mathematical knowledge. Report on and validate	
	vocabulary,	Venn diagrams).	language.	evidence collected.	evidence collected.	their findings, answer questions and justify their	their findings, answer questions and justify their	
	such as,	Talk about what		Use suitable vocabulary to talk or	Use scientific vocabulary to report and	conclusions based on evidence collected, identify	methods, opinions and conclusions, and use their	
	because, then	they have done and		write about what they have done,	answer questions about their findings	improvements, further questions and predictions.	results to suggest improvements to their	
	and next.	say, with help, what		what the purpose was and, with	based on evidence collected, draw		methodology, separate facts from opinions, pose	
1		they think they have found out.		help, draw a simple conclusion based on evidence collected,	simple conclusions and identify next steps, improvements and further		further questions and make predictions for what they might observe.	
1		nave round out.		beginning to identify next steps or	questions.		they might observe.	
				improvements.	4.5500.00			
-			•	•	•	•		

Living things; Humans and other Animals; Plants and Habitats

The basic body parts are the head, arms, legs, nose, eyes, ears, mouth, hands and feet. Different body parts are used for different things, such as the eyes are used to see.

Draw pictures of human body and name different body parts.

Know and talk about factors that support overall health/wellbeing: regular physical activity; healthy eating; toothbrushing; sensible 'screen time'; having good sleep routine; being a safe pedestrian. Wash/dry hands, especially after using toilet and before eating, to stop spread of harmful germs. Wash and dry hands regularly and say why this is important. Animals are living things. There

Animals are living things. There are different types of animal. Parent and baby mammals include cow and calf, sheep and lamb, and cat and kitten. Parent and baby birds include duck and duckling, chicken and chick, and goose and gosling.

Match animals to their young. Different animal groups have some common body parts, such as birds have wings and fish fins. Observe/describe living things. Identify common features for different groups of animals, inc. wild & domestic animals.

Animals are living things and need food, water, air and shelter to survive.

Describe how to care for animals including pets.

Animals eat different kinds of food; other animals, plants, both. Match animals to the foods that

Living things change over time.
This includes growth and decay.
Describe ways that plants or
animals should be cared for for
them to survive.

Plants and trees are living things and can be identified according to features, such as leaves, seeds, flowers. Plants need sunlight, water and air to survive.

Describe how to care for plants.

Begin to name and group plants and trees by observable features.

Parts of plants and trees include trunk, branch, twig, roots, stem, flowers, leaves.

Name and describe basic features of plants & trees.

All living things (plants and animals) change over time as they grow and mature.

Describe, following observation, how plants and animals change over time.

Living things need to be cared for in order for them to survive. They need water, food, warmth and shelter.

The basic body parts are the head, arms, legs, nose, eyes, ears, mouth, hands and feet. The five senses are hearing, sight, smell, taste and touch. Ears are used for hearing, eyes are used to see, the nose is used to smell, the tongue is used to taste and skin gives the sense of touch. Draw/label main parts of human body and say which body part is associated with

which sense.
Animals are living things.
Animals can be sorted and grouped into six main groups: fish, amphibians, reptiles, invertebrates, birds and mammals.

Identify, compare, group and sort a variety of common animals, including fish, amphibians, reptiles, birds, invertebrates and mammals, based on observable features.

Different animal groups have some common body parts, such as eyes and a mouth, and some different body parts like fins, wings.

Label and describe the basic structures of a variety of common animals, including fish, amphibians, reptiles, birds, mammals.

Carnivores eat other animals (meat), herbivores eat plants, omnivores eat other animals and plants.

Group and sort a variety of common animals based on foods they eat.

Plants are living things.
Common plants include the daisy, daffodil and grass.
Trees are large, woody plants and are evergreen or deciduous. Trees that lose leaves in the autumn are called deciduous trees.
Examples include oak, beech, rowan. Trees that shed old leaves and grow new leaves all year round are called evergreen trees. Eg.s include holly and pine.

holly and pine.
Identify, compare, group and sort a variety of common wild and garden plants, including deciduous and evergreen trees, based on observable features.
The basic plant parts include root, stem, leaf, flower, petal, fruit, seed and bulb.
Trees have a woody stem

called a trunk.
Label and describe the basic structure of a variety of common plants.

Human offspring go through different stages as they grow to become adults. These include baby, toddler, child, teenager, adult and elderly.

Describe the stages of human development (baby, toddler, child, teenager, adult and elderly).

Animals, including humans need water, food, air and shelter to survive.

Explain how animals, including humans, need water, food, air and shelter to survive.

A healthy lifestyle includes exercise, good personal hygiene, good quality sleep and a balanced diet. Risks associated with an unhealthy lifestyle include obesity, tooth decay and mental health problems.

Describe the importance of a healthy lifestyle, including exercise, a balanced diet, good quality sleep and personal hygiene.

Living things are alive. Dead things are those that were once living but are no longer. Some things have never been alive.

Compare and group things that are living, dead or have never been alive.

A habitat is a place where a living thing lives. Local habitats include parks, woodland and gardens. Habitats beyond the locality include beaches, rainforests, deserts, oceans and mountains. All living things live in a habitat to which they are suited and it must provide everything they need to survive. A microhabitat is a very small habitat.

Describe a range of local habitats and habitats beyond their locality (beaches, rainforests, deserts, oceans and mountains) and what all habitats provide for the things that live there.

Identify and name a variety of plants and animals in a range of habitats and microhabitats.

Food chains show how living things depend on one another for food. All food chains start with a plant, followed by animals that eat plants or other animals. Interpret and construct simple food chains to describe how living things depend on each other as a source of food.

Animals have offspring that grow into adults. Different animals have different stages of growth or life cycles. Describe the basic life cycles of some familiar animals (egg, caterpillar, pupa, butterfly; egg, chick, chicken; spawn, tadpole, froglet, frog).

Plants need air, light, water, minerals from the soil, room to grow and a suitable temperature to grow and stay healthy. Without any one of these things, they will die. Different plants have different needs depending on their habitat. Examples include cacti, which need less water than typical, and ferns, which can grow in lower light levels.

Describe the requirements of plants for life and growth (air, light, water, nutrients, room to grow and a suitable temperature) to grow and stay healthy and how they vary from plant to plant.

The plant's roots anchor the plant in the ground and transport water and minerals from the ground to the plant. The stem (or trunk) support the plant above the ground. The leaves collect energy from the Sun and make food for the plant. Flowers make seeds to produce new plants.

Name/describe the functions of the different parts of flowering plants (roots, stem, leaves and flowers). Water is transported in plants from roots, through the stem and to leaves, through tiny tubes called xylem. Investigate how water is transported within plants. Plants grow from seeds and bulbs which need water and warmth to start growing (germinate). As the plant grows bigger, it develops leaves and flowers. Observe and describe how seeds and bulbs change over time as they grow into mature plants.

Animals, including humans cannot make their own food and have to get nutrition from what they eat. Carnivores get their nutrition from eating other animals. Herbivores get their nutrition from plants. Omnivores get their nutrition from eating a combination of both plants and other animals. It is important to have a balanced diet made up of the main food groups, including carbohydrates, proteins, fruit and veg, dairy products and alternatives, and fats and spreads. Humans need to stay hydrated by drinking water.

Compare and contrast the diets of different animals. Explain the importance and characteristics of a healthy, balanced diet. Humans have a skeleton and muscles for movement, support and protecting organs. Major human bones include the skull, ribs, spine. humerus, ulna, radius, pelvis, femur, tibia and fibula. Major human muscle groups include biceps, triceps, abdominals, trapezius. gluteals, hamstrings, quadriceps, deltoids, gastrocnemius, latissimus dorsi and pectorals. Describe how humans need the skeleton and muscles for protection, movement, support. Some animals have skeletons for support, movement, protection.

Endoskeletons are those

animals, such as cats and

horses. Exoskeletons are

outside of some animals,

such as beetles and flies.

Some animals have no

skeleton, such as slugs

Identify and group

animals that have no

skeleton, an internal

skeleton (endoskeleton)

and an external skeleton

and jellyfish.

(exoskeleton).

found inside some

those found on the

The digestive system is responsible for digesting food and absorbing nutrients and water. The main parts of the digestive system are the mouth, oesophagus, stomach, small intestines, large intestines and rectum. The mouth starts digestion by chewing food and mixing it with saliva. The oesophagus transports the chewed food to the stomach, where it mixes with stomach acid and gets broken down into smaller pieces. In the small intestine, nutrients from the food are absorbed by the body. In the large intestine, water is absorbed by the body. The remaining undigested waste is stored in the rectum before excretion through the anus. Describe the purpose of the digestive system. its main parts and each of their functions. There are four different types of teeth:

incisors, canines, premolars and molars.
Incisors are used for cutting. Canines are used for tearing. Premolars and molars are used for grinding and chewing. Carnivores, herbivores and omnivores have characteristic types of teeth. Herbivores have many large molars for grinding plant material. Carnivores have large canines for killing their prey and tearing meat.

Identify/describe functions of four types of teeth in humans and other animals.

Regular teeth brushing, limiting sugary foods and visiting the dentist are important for good oral hygiene.

Describe what damages teeth and how to look after them.

Habitats change over time, either due to natural or human influences. Natural influences include extreme or unseasonable weather. Human influences include habitat destruction or pollution. Changes can pose a risk to animals and plants in the habitat Describe how environments and habitats, such as a mountain or ocean, can change over time due to natural influences, what influences these changes, the impact this can have on living things and how living things need to be able to adapt to changes.

An adaptation helps an animal or plant survive in its habitat. If living things are unable to adapt to changes within their habitat, they risk becoming extinct.

Explain how adaptations help living things to survive in their habitat.

Food chains show what animals eat within a habitat and how energy is passed on over time. All food chains start with a producer, typically a green plant. The producer is eaten by a primary consumer (prey), which is eaten by a secondary consumer (prey), which is eaten by a tertiary consumer. All food chains end with a top or apex predator. Changes within a food chain, such as Population changes. or an abundance or lack of one food type, have an impact on the entire food chain and web.

Construct and interpret a variety of food chains and webs to show interdependence and how energy is passed on over time.

Describe, using their knowledge of food chains and webs, what could happen if a habitat had a living thing removed or introduced.

Humans go through characteristic stages as they develop towards old age. These stages include baby, infant, toddler, child, adolescent, young adult, adult and senior citizen. Puberty is a transition between childhood and adulthood.

Describe the changes as humans develop from birth to old age.

Puberty is the period during which adolescents reach sexual maturity and become capable of reproduction. It causes physical and emotional changes. Good personal hygiene (washing, wearing clean clothes and brushing teeth) can prevent disease or illness. Explain why personal hygiene is important during puberty.

Humans reproduce sexually, which involves two parents (one female, one male) and produces offspring that are different from the parents.

Describe the process of human reproduction

Describe the process of human reproduction. A life cycle is the series of changes in the life of a living thing and includes these basic stages: birth, growth, reproduction and death. Mammals' life cycles include the stages: embryo, juvenile, adolescent and adult. Amphibians' life cycles include the stages: egg, larva (tadpole), adolescent and adult. Some insects' (butterflies, beetles and bees) life cycles include the stages: egg, larva, pupa and adult. Birds' life cycles include the stages: egg, baby, adolescent and adult. Reproduction is the process of producing offspring and is essential for the continued survival of a species. There are two types of reproduction: sexual and asexual. Sexual reproduction involves two parents (female and male) and produces offspring that are different from the parents. Asexual reproduction involves one parent and produces offspring identical to the parent.

Identify that living things produce offspring of the same kind, although the offspring are not identical to either parent.

Compare the life cycles of animals, including a mammal, an amphibian, an insect and a bird. Describe the life process of reproduction in some plants and animals.

Flowers are important in the life cycle of flowering plants. The processes of a plant's life cycle include germination, flower production, pollination, seed formation and seed dispersal. Insects and the wind transfer pollen from 1 plant to another (pollination). Animals, wind, water and explosions can disperse seeds away from the parent plant (seed dispersal). Draw/label the life cycle of a flowering plant.

Flowering plants reproduce sexually. The flower is essential for sexual reproduction. Other plants reproduce asexually. Bulbs, corms and rhizomes are some parts used in asexual reproduction in plants. Group and sort plants by how they reproduce.

Parts of a flower include the stamen, filament, anther, pollen, carpel, stigma, style, ovary, ovule and sepal. Pollination is when the male part of a plant (pollen) is carried, by wind, insects or other animals, to the female part of the plant (carpel). Pollen travels to the ovary, where it fertilises the ovules (eggs). Seeds are then produced, which disperse far away from the parent plant and grow new plants.

Label and draw the parts of a flower involved in sexual reproduction in plants (stamen, filament, anther, pollen, carpel, stigma, style, ovary, ovule and sepal).

The role of the circulatory system is to transport oxygen, water and nutrients around the body. The circulatory system includes the heart, blood vessels and blood. The heart pumps blood through blood vessels and around the body. There are three types of blood vessel: arteries, veins and capillaries. They each have a different-sized hole (lumen) and walls. The blood carries gases (oxygen and carbon dioxide), water and nutrients to where they are needed. Red blood cells carry oxygen and carbon dioxide around the body. Blood also contains white blood cells, which protect body from infection. Name and describe purpose of the circulatory system and the functions of the heart, blood vessels and blood. Lifestyle choices can have a positive (exercise and eating healthily) or negative (drugs, smoking and alcohol) impact

on the body.

Explain the impact of positive and negative lifestyle choices on the body.

Scientists classify living organisms into broad groups according to their common observable characteristics and based on similarities and differences. Animals can be divided into six main groups: mammals, reptiles. amphibians, birds, fish and invertebrates. These groups can be further subdivided. Vertebrates are an example of a classification group. There are a number of ranks, or levels, within the biological classification system. The first is called a kingdom, the second a phylum, then class, order, family, genus, species. Classify living things, including microorganisms. animals and plants, into groups according to common observable characteristics and based on similarities and differences. Classification keys are scientific tools that aid the

identification of living things

Use & construct classification

systems to identify animals

and plants from a range of

habitats, giving reasons.

based on their physical

characteristics.

cell? How can we study them? How do they become giant organisms that can do many things through specialisation and collaboration? How do joints and muscles really work? Why is interdepende nce so important? What impact are we having on the natural world? Why are we all different? What is reproduction? Why are pollinators so important?

Biology: What

exactly is a

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7 (Yateley)
	Objects are	A material is what	Some objects	There are three different rock	Materials can be grouped according to	Materials can be grouped according to their	Scientists compare fossilised	Chemistry: What is
	made from	an object is made	and materials	types: sedimentary, igneous	whether they are solids, liquids or gases.	basic physical properties. Properties include	remains from the past to living	everything made of?
	different	from. Everyday	can be changed	and metamorphic. Sedimentary	Solids stay in one place and can be held.	hardness, solubility, transparency, conductivity	species that exist today to	Why are some
	materials.	materials include	by squashing,	rocks form from mud, sand and	Some solids can be squashed, bent, twisted	(electrical and thermal) and magnetism. Heat	hypothesise how living things have	things
	Everyday	wood, plastic, glass,	bending,	particles that have been	and stretched. Examples of solids include	energy is transferred in three different ways:	evolved over time. Humans and	solid and others
	materials	metal, water, rock,	twisting,	squashed together over a long	wood, metal, plastic and clay. Liquids move	conduction, convection and radiation. A material	apes share a common ancestry and	liquid or gases? How
	include,	brick, paper and	stretching,	time to form rock. Examples	around (flow) easily and are difficult to hold.	that allows heat energy to travel through it is a	evidence for this comes from fossil	can we get pure
	wood, plastic,	fabric.	heating,	include sandstone and	Liquids take the shape of the container in	thermal conductor. Poor thermal conductors are	discoveries and genetic	water
	glass, fabric,	Identify and name	cooling, mixing	limestone. Igneous rocks are	which they are held. Examples of liquids	known as thermal insulators.	comparison.	from the sea? Is
4.	metal and	what an object is	and being left	made from cooled magma or	include water, juice and milk. Gases spread	Compare and group everyday materials by their	Describe some significant changes	black ink really
Ce	stone.	made from,	to decay.	lava. They usually contain	out to fill the available space and cannot be	properties, including hardness, solubility,	that have happened on Earth and	black? Why does
an	Materials	including wood,	Describe how	visible crystals. Examples	held. Examples of gases include oxygen,	transparency, conductivity (electrical and	the evidence, such as fossils, that	iron rust but
rit	have	plastic, glass, metal,	some objects	include pumice and granite.	helium and carbon dioxide. Air is a mixture of	thermal) and magnetism. Investigate and	support this.	copper doesn't?
he	different	water and rock.	and materials	Metamorphic rocks are formed	gases.	identify good thermal insulators, describing their	Animals that sexually reproduce	Which is better to
n	properties.	Objects and	can be changed	when existing rocks are heated	Group and sort materials into solids, liquids	common features.	generate new offspring of the	put on a bee sting –
and Inheritance	Explore and	materials can be	and how these	by the magma under the Earth's	or gases.	Some mixtures can be separated by filtering,	same kind by combining the	,
ar	sort materials	looked at, compared	changes can be	crust or squashed by the	Heating or cooling materials can bring about	sieving and evaporating. Sieving can be used to	genetic material of two individuals.	vinegar or toothpaste?
nc	through play	and grouped	desirable or	movement of the Earth's	a change of state. This change of state can be	separate large solids from liquids and some	Each offspring inherits two of every	or toothpaster
ij	and	according to their	undesirable.	tectonic plates. They are usually	reversible or irreversible. The temperature at	solids from other solids. Filtering can be used to	gene, one from the female parent	
Evolution	exploration,	properties.	A material's	very hard. Examples include	which materials change state varies	separate small solids from liquids. Some	and one from the male parent.	
Š	identifying	Materials have	physical	slate and marble.	depending on the material. Water changes	materials (solutes) will dissolve in liquid	Animals and plants can be bred to	
	different	different properties,	properties	Compare and group rocks based	state from solid (ice) ⇒ liquid (water) at 0°C	(solvents) to form a solution. The solute can be	produce offspring with specific and desired characteristics. This is	
te	properties. Some foods,	such as hard or soft; stretchy or stiff;	make it suitable for	on their appearance, properties or uses.	and from liquid (water) ⇒ gas (water vapour) at 100°C. The process of changing from a	recovered by evaporating off the solvent by heating.	called selective breeding. Examples	
at	such as ice	rough or smooth;	particular	Fossils form over millions of	solid to liquid is called melting. The reverse	Separate mixtures by filtering, sieving and	include cows that produce large	
of Matter,	and	opaque or	purposes, such	years and are the remains of a	process of changing from a liquid to a solid is	evaporating. Explain, following observation, that	quantities of milk or crops that are	
	chocolate,	transparent; bendy	as glass for	once-living organism, preserved	called freezing. The process of changing from	some substances (solutes) will dissolve in liquid	disease-resistant.	
States	melt when	or rigid; waterproof	windows and	as rock. Scientists can use fossils	a liquid to a gas is called evaporation. The	(solvents) to form a solution and the solute can	Explain that living things have	
at	heated, but	or not waterproof.	brick for	to find out what life on Earth	reverse process of changing from a gas to a	be recovered by evaporating off the solvent.	changed over time, using specific	
St	then harden	Investigate and	building walls.	was like in prehistoric times.	liquid is called condensation.	A material's properties dictate what it can be	examples and evidence. Describe	
Rocks,	(solidify or	describe the	Many materials	Fossils form when a living thing	Observe and explain that some materials	used for. For example, cooking pans are made	how animals and plants can be	
)C	freeze) when	physical properties	are used for	dies in a watery environment.	change state when they are heated or cooled	from metal, which is a good thermal conductor,	bred to produce offspring with	
R	cooled.	of some everyday	more than one	The body gets covered by mud	and measure or research the temperature in	allowing heat to quickly transfer from the hob to	specific and desired characteristics	
ls,	Observe what	materials, such as	purpose, such	and sand and the soft tissues	degrees Celsius (°C) at which materials	the contents of the pan.	(selective breeding).	
ia	happens	hard or soft;	as metal for	rot away. Over time, the ground	change state.	Describe, using evidence from comparative or	An adaptation is a physical or	
Materials	when a range	stretchy or stiff;	cutlery and	hardens to form sedimentary	The water cycle has four stages: evaporation,	fair tests, why a material has been chosen for a	behavioural trait that allows a	
۸a	of everyday	rough or smooth;	cars.	rock and the skeletal or shell	condensation, precipitation and collection.	specific use, including metals, wood and glass.	living thing to survive. Adaptations	
	materials,	opaque or	Compare the	remains turn to rock.	Water in lakes, rivers and streams is warmed	Reversible changes include heating, cooling,	evolve by natural selection.	
la)	including	transparent; bendy	suitability of a	Describe simply how fossils are	by the Sun, causing the water to evaporate	melting, dissolving and evaporating. Irreversible	Favourable traits help an organism	
Ž	foods, are	or rigid and	range of	formed, using words, pictures	and rise into the air as water vapour. As the	changes include burning, rusting, decaying and	survive and pass on their genes to	
Everyday	heated and	waterproof or not	everyday	or a model.	water vapour rises, it cools and condenses to	chemical reactions.	subsequent generations.	
Ū	cooled,	waterproof.	materials for	Soils are made from tiny pieces	form water droplets in clouds. The clouds	Identify, demonstrate and compare reversible	Identify how animals and plants are	
	sorting and	Compare and group	particular uses,	of eroded rock, air and organic	become full of water until the water falls	and irreversible changes.	adapted to suit their environment,	
	grouping	materials in a	including	matter. There are a variety of	back to the ground as precipitation (rain, hail,	Very hot and very cold materials can burn skin.	such as giraffes having long necks	
	them based	variety of ways,	wood, metal,	naturally occurring soils,	snow and ice). The fallen water collects back	Heating materials should be done safely.	for feeding, and that adaptations	
	on their	such as based on	plastic, glass,	including clay, sand and silt.	in lakes, rivers and streams. Evaporation and	Explain the precautions needed for working	may lead to evolution.	
	observations.	their physical	brick, rock,	Different areas have different soil types.	condensation are caused by temperature changes.	safely when heating, burning, cooling and mixing materials.		
		properties or being natural or man-	paper and cardboard.	Investigate soils from the local	Describe the water cycle using words or	materials.		
		made, recyclable or	carubuaru.	environment, making	diagrams and explain the part played by			
		non-recyclable.		comparisons and identifying	evaporation and condensation.			
		non recyclable.		features.	Craporation and condensation.			
		l	I		1	1		

	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7 (Yateley)
	Natural phenomena include	There are four seasons:	Simple	Dark is the absence of light and we	When an instrument is played by plucking, striking or	As Earth orbits the Sun, it also spins on its axis. It	Light travels in straight lines.	Physics: Why do high
	weather, shadows, clouds,	spring, summer,	equipment	need light to be able to see.	blowing, the air around or inside it vibrates. These	takes Earth a day (24 hours) to complete a full	Identify that light travels in straight	heeled shoes sink into
	rainbows, flooding, waves.	autumn and winter.	can be used	Describe differences between dark and	vibrations travel as a sound wave. Sound waves	spin. During the day, the Sun appears to move	lines.	mud but boots
	Name and describe natural	Certain events/weather	for	light and how we need light to see.	travel through a medium, such as air or water, to the	through the sky. However, this is due to the Earth	'White' light is a term used to describe	don't? How is it that I can
	phenomena, eg shadows, colours of rainbow, speed	patterns happen in different seasons.	measuring weather,	Light can be reflected from different surfaces. Some surfaces are poor	ear. Explain how sounds are made and heard using	rotating and not the Sun moving. Earth rotates to the east or, if viewed from above the North Pole, it	visible, ordinary daylight. White light can be split into a spectrum of colours	see lightning before I hear thunder?
	of clouds moving across sky	Observe the local	such as	reflectors, such as some fabrics; other	diagrams, models, written methods or verbally.	rotates anti-clockwise, which means the Sun rises	(rainbow) by droplets of water or	Why do some things
	and the strength of a wave.	environment through	measuring	surfaces are good reflectors (mirrors.)	Pitch is how high or low a sound is. Parts of an	in the east and sets in the west. As the Earth	prisms.	move faster than others
	Explore the natural world	the year; ask/answer	temperatur	Group and sort materials as being	instrument that are shorter, tighter or thinner	rotates, different parts of it face the Sun, which	Describe, using scientific language,	and what stops us
	around them; give simple	questions about living	e with a	reflective or non-reflective.	produce high-pitched sounds. Parts of an instrument	brings what we call daytime. The part facing away	phenomena associated with refraction	floating off of the planet?
	descriptions, following	things/seasonal change.	thermomet	Light from the Sun is damaging for	that are longer, looser or fatter produce low-pitched	is in shadow, which is night time. When it is	of light.	
>	observation, of changes.	Different types of	er;	vision and skin. Protection from Sun	sounds.	daytime in one location, it is night time on the	Light sources give out light. They can	
ctricity	The weather can change	weather include	identifying	includes sun cream, sunglasses, sun	Compare and find patterns in the pitch of a sound,	other side of the world.	be natural or artificial. When light hits	
I È	throughout the day, week and month. The weather is	sunshine, rain, hail, wind, snow, fog,	wind direction	hats and staying indoors/in the shade. Explain why light from the Sun can be	using a range of equipment, including voices and musical instruments.	Use the idea of the Earth's rotation to explain day and night, and the Sun's apparent movement	an object, it is absorbed, scattered, reflected or a combination of all three.	
e C	different at different times	lightning, storm and	and force	dangerous.	Volume is how loud or quiet a sound is. The harder	across the sky.	Light from a source or reflected light	
	in the year. We describe	cloud. Some weather	with a	A shadow is formed when light from a	an instrument is hit/plucked/blown, the stronger the	The Solar System is made up of the Sun and	enter the eye. Vertebrates, such as	
ਰ	daily weather as sunny,	types are more	windsock or	light source, such as the Sun, is blocked	vibrations and louder the sound.	everything that orbits around it. There are eight	mammals, birds and reptiles, have a	
and	rainy, windy, cloudy, warm	common in certain	measuring	by an object. Shadows are normally the	Compare and find patterns in the volume of a sound,	planets in our Solar System: Mercury, Venus,	cornea and lens that refracts light that	
S	or cold. Weather is warmer	seasons, such as snow	rainfall with	same shape as the object that cast	using a range of equipment, including voices and	Earth, Mars, Jupiter, Saturn, Uranus and Neptune.	enters the eye and focuses it on the	
Je.	in summer (more sunshine)	in winter. The UK has	a rain	them. Opaque objects cast dark	musical instruments.	The Earth is covered in water and land. Earth orbits	nerve tissue at the back of the eye,	
agn	and colder in the winter	typical weather in each	gauge.	shadows, transparent pale shadows	Sounds are louder closer to the sound source and fainter as the distance from the sound source	the Sun and a year (365.25 days) is the length of	which is called the retina. Once light reaches the retina, it is transmitted to	
≥	(more snow, hail and rain.) Notice and describe	of the seasons. For example, winter is cold	Investigate weather	shadows, transparent pale shadows. Explain, using words or diagrams, how	increases.	time it takes for Earth to complete a full orbit. Describe or model the movement of planets in our	the brain via the optic nerve.	
	patterns of weather in	and sometimes frosty,	using simple	shadows are formed when a light	Compare how the volume of a sound changes at	Solar System, including Earth, relative to the Sun.	Explain that, due to how light travels,	
es	summer and winter.	whereas summer is	equipment.	source is blocked by an opaque object.	different distances from the source.	The Moon orbits Earth, completing a full orbit	we can see things because they give	
5	A shadow is the same	warm and sometimes	It is	Shadows change shape and size when	Electricity is a type of energy. It is used to power	every month (27.3 days).	out or reflect light into the eye.	
Б	shape as the object that	sunny.	important	the light source moves. For example,	many everyday items, such as kettles, computers	Describe or model the movement of the Moon	A shadow appears when an object	
e,	makes it.	Observe and describe	to stay safe.	when the light source is high above the	and televisions. Electricity can also come from	relative to Earth.	blocks the passage of light. Apart from	
ac	Compare shadows made by	different types of	Some ways	object, the shadow is short and when	batteries. Batteries eventually run out of power and	The Sun, Earth, Moon and the planets in our solar	some distortion or fuzziness at the	
Sp	diff. objects and materials. Some light sources need	weather. Describe typical UK seasonal	to stay safe include	the light source is low down, the object's shadow is long. Thus, shadows	need to be recycled or recharged. Batteries power devices that can be carried around, such as mobile	system are roughly spherical. All planets are spherical because their mass is so large that they	edges, shadows are the same shape as the object. The distortion or fuzziness	
	electricity or batteries to	weather patterns.	staying safe	change during the day as the Sun	phones and torches.	have their own force of gravity. This force of	depends on the position or type of light	
	work (eg torch) and some	The number of daylight	in strong	appears to change position in the sky.	Compare common household equipment and	gravity pulls all of a planet's material towards its	source.	
된	do not, such as candles.	hours varies throughout	sunlight	Find patterns in the way shadows	appliances powered or not by electricity.	centre, which compresses it into the most compact	Explain, using words, diagrams or a	
Ea	Explore and describe	the year, according to	(sun cream,	change during the day.	Working with electrical circuits can be dangerous.	shape – a sphere.	model, why shadows have the same	
d,	electrical and non-electrical	the season. Day length	sun hat and	Friction is a force between two	Precautions include not touching electrical	Describe the Sun, Earth and Moon as	shape as the objects that cast them	
Ĭ	light sources.	(the number of daylight	sunglasses),	surfaces as they move over each other.	components with wet hands and not putting	approximately spherical bodies and use this knowledge to understand the phases of the Moon	and how shadows can be changed. Lasers are intense beams of light and	
5	Objects move in different ways including roll, slide,	hours) is longer in the summer months and	crossing roads (stop,	Friction slows down a moving object. Smooth surfaces usually generate less	batteries in mouths. Explain the precautions needed for working safely	and eclipses.	they should never be pointed at	
d S	bounce, etc.	shorter in the winter	look and	friction than rough surfaces.	with electrical circuits.	Gravity is a force of attraction. Anything with a	people's faces or aircraft.	
Ž	Explore how objects move	months.	listen), in	Compare how objects move over	A circuit needs a power source, such as a battery or	mass can exert a gravitational pull on another	Explain the dangers of using lasers and	
t a	through their play.	Observe and describe	the kitchen	surfaces of different materials.	cell, with wires connected to both the positive and	object. The Earth's large mass exerts a	ways to use them safely.	
Light	Some objects float and	how day length changes	(not	Some materials have magnetic	negative terminals. Other components include	gravitational pull on all objects on Earth, making	Voltage is measured in volts (V) and is a	
	others sink. When an object	between the seasons.	touching	properties. Magnetic materials are	lamps, buzzers or motors, which an electric current	dropped objects fall to the ground.	measure of the difference in electrical	
S,	sinks it falls through water to the bottom of the vessel.	An object will not move unless a pushing or	hot or sharp objects) and	attracted to (pull towards) magnets. All magnetic materials are metals but not	passes through and affects a response, such as lighting lamp or turning motor. Switches open and	Explain that objects fall to Earth due to the force of gravity.	energy between two parts of a circuit. The bigger the voltage, the more	
nge	An object that floats stays	pulling force is applied.	with	all metals are magnetic. Iron is a	close a circuit and provide control. When a switch is	Friction, air resistance and water resistance are	electrons are pushed through the	
Ф	at the water's surface.	Some forces require	household	magnetic metal. Other materials are	open, it creates a gap and the current cannot travel	forces that oppose motion and slow down moving	circuit. The more voltage flowing	
\ \frac{1}{2}	Objects that float are	direct contact, whereas	chemicals	non-magnetic, such as wood, dough	around the circuit. When closed, a switch completes	objects. These forces can be useful, such as bike	through a lamp, buzzer or motor, the	
 	typically light or hollow.	other forces can act at a	(not	and glass.	the circuit and allows a current to flow all the way	brakes and parachutes, but sometimes we need to	brighter the lamp, the louder the	
ons	Objects that sink are	distance, such as	touching,	Compare and group materials based on	around it.	minimise their effects, such as streamlining boats	buzzer and the faster the motor. Compare and give reasons for	
S	typically heavy or dense. Describe, predict and sort	magnetic force. Forces can change how things	drinking or eating) and	their magnetic properties. Magnets have two poles (north and	Predict and describe whether a circuit will work based on whether or not the circuit is a complete	and planes to move through water or air more easily and using lubricants and ball bearings	variations in how components in	
ea	things that float and sink	move and can change	not	south). Opposite poles (north and	loop and has a battery or cell.	between two surfaces to reduce friction.	electrical circuits function (brightness	
S	and talk about the forces	their shape.	touching	south) attract each other, while like	A series circuit is a simple loop with only one path	Compare and describe, using a range of toys,	of lamps; volume of buzzers and	
	that they can feel.	Explain that an object	electricity.	poles (north and north, or south and	for the electricity to flow. A series circuit must be a	models and natural objects, the effects of water	function of on or off switches). Explain	
	Rules help to keep us safe	will not move unless a		south) repel each other.	complete loop to work and have a source of power	resistance, air resistance and friction.	how the brightness of a lamp or	
	in different environments	push or pull force is	Describe	Investigate and compare a range of	from a battery or cell.	Mechanisms, such as levers, pulleys and gears, give	volume of a buzzer is affected by the	
	and when using certain	applied, describing forces in action and	ways to stay	magnets (bar, horseshoe and floating) and explain that magnets have two	Construct operational simple series circuits using a range of components and switches for control.	us a mechanical advantage. A mechanical advantage is a measurement of how much a	number and voltage of cells used in a circuit.	
	equipment. Follow instructions when in	whether the force	safe in some	poles (north and south) and that	Electrical conductors let electricity flow through	simple machine multiplies the force that we put in.	There are recognised symbols for	
	different environments and	requires direct contact	familiar situations.	opposite poles attract each other,	them, insulators do not. Common electrical	The bigger the mechanical advantage, the less	different components of circuits.	
	when handling simple	or whether the force	situations.	while like poles repel each other.	conductors are metals. Common insulators include	force we need to apply.	Create circuits using a range of	
	equipment, such as	can act at a distance			wood, glass, plastic and rubber.	Describe and demonstrate how simple levers,	components and record	
	scissors.	(magnetic force).			Describe materials as electrical conductors or	gears and pulleys assist the movement of objects.	diagrammatically using the recognised	
				<u> </u>	insulators.		symbols for electrical components.	